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Incommensurate Structure in the 
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The phase diagram of the two-dimensional lattice.gas ANNNI model is 
investigated using the cluster transfer-matrix method. The numerical calcula- 
tions have shown commensurate, disordered, and floating incommensurate 
phases. The properties of the incommensurate phase are studied in detail and 
the position of the Lifshitz point is discussed, 

KEY WORDS: Lattice-gas ANNNI model; floating incommensurate phase; 
spatially modulated structures. 

1. I N T R O D U C T I O N  

Recently a generalized mean-field method for the treatment of spatially 
modulated structures, including incommensurate ones, in the lattice models 
has been developed. (1~ It  was applied to a model with competing inter- 
actions simulating the ordering of oxygen atoms in the CuO2 plane of an 
YBa2Cu307_ 6 crystal. (2~ A phase diagram with a set of commensurate 
structures and an incommensurate structure between them was obtained. 
A similar behavior, though with less numerous phases, is observed in a 
much simpler m o d e l - - t h e  axial-next-nearest-neighbor Ising ( A N N N I )  
model, (3'4~ which was extensively studied in the last decade. In three 
dimensions it displays an infinite hierarchy of commensurate structures; for 
two-dimensional models  an area of  a floating incommensurate structure 
appears  in the phase diagram. 

The  cluster transfer-matrix method C1'2~ describes successfully structures 
incommensurate to the underlying lattice, as it recasts the problem of 
calculation of the part i t ion function to a nonlinear mapping procedure. In 
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distinction to a similar idea of mapping the average row magnetization in 
the 3D ANNNI model exploited by Jensen and Bak, (5) the mapping proce- 
dure is applied to auxiliary functions ~i.: defined on finite clusters in the 
2D ANNNI model. In the case of a semi-infinite crystal the initial values 
of the functions g~.: represent boundary condition on the lattice surface. In 
the process of mapping, the bulk value of the gQ: is obtained. Thus, the 
physical meaning of the procedure is transparent and it inherently 
converges to the physically stable or metastable solutions. The method 
yields the spatial dependence of the correlation functions and not only the 
wavelength of the incommensurate structure, as in the finite-size scaling 
transfer-matrix methodJ 6~ 

The ANNNI model has been widely studied by numerous authors and 
methods, including Monte Carlo simulations, (~-9> free and interacting 
fermion approximations,(1~ 1~ interface calculations, (12) series analysis,(13) 
the cluster variation method, (14) the dynamical method, (15) and transfer- 
matrix analysis. (16~ 

The most important features of the resulting phase diagram are 
very similar in all the above-mentioned approaches. The most disputed 
points are the behavior of the system at low temperatures between the 
ferromagnetic and the commensurate modulated phases and the existence 
and position of the Lifshitz points. Both problems will be studied in the 
lattice-gas formulation in Section 4. First, in Section 2, we briefly describe 
the cluster transfer-matrix method used in the present paper. In Section 3, 
we apply this method to the lattice-gas analogue of the ANNNI model on 
the rectangular lattice. 

Despite the fact that many of the approaches (Monte Carlo 
method, (7-9) free fermion method, (1~ mean field approximation) show a 
direct phase transition line between the ferromagneric and the incommen- 
surate phases, it is generally accepted that the disordered phase is stable 
down to the multiphase point at T= 0, as a consequence of unbinding of 
dislocations in the floating phase. As our method does not describe wall 
dislocations, it predicts a Lifshitz point at the boundary of the 
ferromagnetic phase. Nevertheless it can serve as a good starting point for 
a theory of dislocations, as it may be used for the calculation of the wall 
and dislocation energies. The hint that the high-temperature phase persists 
to the low temperatures is discussed in Section 4. 

There is no agreement upon the position of the Lifshitz point at the 
commensurate modulated phase boundary. Our calculation shows that the 
incommensurate phase exists in the vicinity of the commensurate phase up 
to the point where the nearest-neighbor interaction in the competing 
direction is equal to zero, i.e., where the ANNNI model decouples to two 
independent Ising models. 
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2. M E T H O D  

The cluster transfer-matrix method has been applied to the ferro- 
magnetic Ising model (1) and to a model of oxygen atoms with competing 
interactions, ~2) and quite recently it was generalized to a description of 
quantum systems. (17) In this paper we present a simplified version of the 
method more appropriate for numerical calculation. From the beginning 
we assume that the system in thermal equilibrium may be spatially 
modulated. 

The method is suitable for lattice models with short-range interactions, 
the Hamiltonians of which can be written in form of a sum of cluster 
Hamiltonians 

J 

I-/= • n,,,..., ni ) (1) 
i = 1  

where i numbers lattice sites, nik are site variables defined on a finite-size 
cluster of sites around the site i, and nj=O, 1,..., N. A set of short-range 
interaction constants is denoted by {Kt}. (In the case of the lattice-gas 
analogue of the ANNNI model, N =  1.) 

In the f~rst step of the calculation, it is convenient to consider rows 
perpendicular to the expected incommensurate structures and to express 
the Hamiltonian as a sum of strip Hamiltonians dependent on the row 
variables Ni = {ni.1, ni,2,..., ni, s}, s--* ~ ,  

M 

H =  Z G~({K,};N~,..., Ni+k) (2) 
i = I  

where k is the maximum interaction range in the direction perpendicular to 
the rows. (For the ANNNI model k = 2.) As each row appears in k + 1 dif- 
ferent strip Hamiltonians G~, the short-range interactions may be divided 
among different strip Hamiltonians practically in an arbitrary way. On the 
other hand, our approximate approach will not reproduce the ground-state 
properties and the symmetries of the model for all choices of G~. 

In the ANNNI model the resulting magnetization is exactly equal to 
zero for the paramagnetic state in the case when in our method not only 
H but all Gi possess particle-hole symmetry as well. (For low temperatures, 
the magnetization may be nonzero due to the spontaneous symmetry 
breaking, which is a characteristic property of the method.) Similarly, for 
the ground state, the method yields the exact value of the phase transition 
between two different structures only if all the cluster energies G~ are equal 
in both phases at the phase transition point. 

The exponential of the strip Hamiltonian G; is usually called the 



678 Karasovb and ~urda 

transfer matrix, despite the fact that it is a function of row variables Nj 
rather than a matrix, 

1 
T~(Ni,.. . ,  Ue+k)= exp[/~G/({Kt}; N/,..., Ue+k)], /~=-~ (3) 

Using it, the calculation of the partition function 

Z =  ~ e x p [ f l H ( n i ) ]  
{Ni} 

can be performed step by step, by introducing auxiliary functions ~;, 

Z ~i (Ni , . . . ,  N i + k - 1 )  T~(N~ ..... N ~ + k ) = 2 i ~ i + l ( N / + ~ , . . . ,  N i + k )  (4) 
Ni 

If the functions ~j are suitably normalized, the partition function is simply 
a product of all the constants 2;, 

M 
Z = I -  [ 2i 

i=I  

It follows from (1) that the strip Hamiltonians G; can be expressed as 
a sum of cluster Hamiltonians along the strip. That implies factorization of 
their exponentials--the transfer matrices 

Ti(Ni , . . . ,  N i + k )  = 1-I k,t Ti, j ( M ~ , j  ) (5) 
J 

where M k't represents the occupation numbers of a rectangular cluster of i,j 
sites, 

t gli'j "'" ni'j+t 1 M k , t �9 �9 �9 i,j ~- ". 
\hi+k, j �9 ni+k,j+t/ 

(6) 

The second index in (5) and (6) denotes the position of the site in the row. 
The factorization of the T matrix is a consequence of the fact that in 

the system only short-range interactions are present. The auxiliary function 
~i represents the effect of indirect interactions between sites in one half- 
lattice mediated by the other half-lattice. Then, the factorization of ~; 
would be equivalent to the assumption that these interactions are of short 
range. We shall see that after factorization of ~ and ~+1,  e.g., 

~t i (Ni  ..... N i + k _ l ) ~ l ' - I  k - l , ,  ~i,j (M/,j ) (7) 
J 
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the iteration step (4), where a function of an infinite number of variables 
appears, can already be performed. The factorization (7) is the only 
approximation in our method and the values of k and t determine its order. 

The cluster functions gti,: in (7) may be determined from the require- 
ment that the thermal averages of physical quantities defined on small 
clusters are not changed after factorization, 

( A )  = ~ ~i(Ni,..., N~+~_I) "" A(M~.s) ~i+k-l(N~,..., Ni+~-l) 
N i , . . .  N i  + k -  1 

= E I-I 1-I (8) 
N i , - . . , N i + k - I  n m 

where i ~< j ~< i + k - 1, j + l ~< i + k - 1, n ~< t, and the right-hand auxiliary 
function ~ is defined by an equation analogous to (4), 

T~(Ni,..., N,+k) ~t;+k(N,+ 1 ..... Ni+k) 
N i + k  

= ~i+k~ti+k_1(N,,..., N,+k-1) (4') 

Equation (8) is satisfied if ~,.: (and similarly ~ . : )  is chosen as 

~i.j(Mi~.f"') = ~ ~i /  ~ ~i (9) 
k - I t  L k t - 1  

L i j  ' .. 

where we sum over site variables of infinite clusters of sites, 

1, t - -  l ,  t L O. - (Ni ..... Ni+t) - Mi j  

The choice of (7) is not unique. The cluster function gt,: is determined 
up to an arbitrary multiplier and an inverse of the multiplier of the cluster 
function belonging to the next site, 

~ j +  1".*'* i , j +  1 

J 

For example, if ~li, j is given by (9) and 

i~o.i) - 1/2 

the resulting function U:gti, j Uj-)I is symmetric with respect to the mirror 
reflection i,--, i + t, etc., for spatially homogeneous functions ~i- 

After factorization, Eq. (4) can be reformulated directly in terms of 
functions ~,.j defined already on finite clusters. Combining (4) and (9), we 
get 
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/ 

E I1 E Z rI 
Li+k-l'll,m Ni j Li kY ,~ j - I  Ni j 

= E E 1--[ T , jT , , j /  E E 1-[ Ve, jT,,j (10) 
k,l [17' n' k t - i  •i,m,...,•i,m+t Li+l, m J t,m ..... t.m+t Li~l ,  m J 

k , t  ] ' k , t - -  1 Summation over infinite clusters L i +1 . . . .  i+ 1,m can be done exactly using 
again the transfer-matrix technique. The transfer matrix Si, j =  Ti, sTi, J of 
this one-dimensional problem is finite. 

The iteration procedure (10) represents a nonlinear mapping 
~-/i,j ~ ~-'r 1,j of the auxiliary functions ~,-,j in the ith row onto the func- 
tions in the (i + 1)th row. The function ~vj in the process of iteration may 
converge to a homogeneous solution or oscillate among a finite number of 
values or acquire an infinite number of values in a quasiperiodic way. 
These possibilities correspond to homogeneous, commensurate, and 
incommensurate structures of the lattice, respectively. In other words, the 
spatial behavior of the functions g~i,j alone determines the phase diagram 
of the Hamiltonian H. We note, that in the framework of the cluster 
transfer-matrix method we can calculate the correlation functions and the 
free energy, too. (1'2) 

The functions T;,j may also depend on the position along the strip j, 
but only a finite number of them are allowed to be different from each 
other. In the case of spatial modulation along the strips, we have to choose 
carefully the initial values of the auxiliary functions at the left and right 
ends of the strip when evaluating the sum in (10), to be consistent with 
resulting structures. 

As stressed in the Introduction, the main difference between our non- 
linear approach and that of Jensen and Bak (s) is that we map auxiliary 
functions g/~,j instead of mean occupation numbers ( n ) .  As a consequence 
we obtain stable fixed points and orbits, which can be found easily with 
high precision. The method is dimension sensitive. 

3. LATTICE-GAS ANNNI  MODEL 

In this section our cluster approximation method is applied to the 
lattice-gas analogue of the 2D ANNNI model on the rectangular lattice. 
This model is described by the standard Hamiltonian 

hj  

Hi ,  j = I~ni, j + ni, j(Konio+ 1 + KI ni+ 1o + K2ni + 2,j) (11 ) 

#o Jm (m = 0, 1, 2) Km= T 
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where i refers to the rows of the rectangular lattice and j specifies the sites 
in these rows. The chemical potential go is given by 

~ o  = - J o -  J~ - J2 

which means that there is a zero magnetic field in the original ANNNI 
model. If the Hamiltonian (11) describes an adsorbate system,/~0 must be 
read as (#0 + e), where e denotes the binding energy of the adatoms to the 
substrate. The ne, j =  0 or 1 are the occupation numbers and for the pair 
interaction constants Jo, J1, and J2 a parametrization 

J l =  (i --~) Jo, J2 = -~Jo,  0~<0~< 1 

is chosen (Jo > 0). 
As shown in the preceding section, the factorization (7) determines the 

order of the approximation in our method. Let us recall that the duster  
Mk'f has a rectangular shape with sides k and t lattice constants, respec- i, J 
tively. In the case of the ANNNI model k is equal to two [the maximum 
interaction range in the Hamiltonian (11)1 and t depends on our choice. 
Ou/" calculations are performed for t = 1 and 2, i.e., we use a pair of the 
lowest approximations of our method. All the following expressions will be 
given in explicit form only for t = 1. 

In order to solve the iteration equation (10), we need to express the 
transfer matrix elements T,-.j by means of the parameters of the 
Hamiltonian (11). Comparing first (3) with (5), and then (2) with (11), we 
get the relation 

T~,j( M 2") ) = exp[  flGi, j( M2)  1 )] (12) 

where .the strip Hamiltonian elements Gi, j can be chosen in the form 

Gi,  j = ILl (ni, j + ni, j+ 1 ) +/-Z2(Tti + 1,j + ni+ 1,j+ i) + I-ta(ni+ 2,j + ni + 2,j+ 1 ) 

.~L l~o(ni, jrli, j+ 1 "q- hi+ 1,jHi+ 1, j+ 1 "q" ni+ z,jHi+ 2,j+ 1) 

+ K 1Eni+ 1,j(ni, j -4- hi+ 2, j )  "q- ni+ 1, j+  1(hi, j+ 1 + h i +  2 , j +  1) ]  

+ x2(ni, jni+2,j+ ni, j+ lni+2,s+ 1) (13) 

When using only the translational symmetry of the system, we get for the 
parameters of Ge, j the following relations: 

2#3 = #o - 2pl - 2p2 
and 

Jo 1 - ~  
x ~  ~ q -  4 J 0 ,  t c 2 = - - ~ J o  
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The parameters /~1 and #2 are not arbitrary, but they must satisfy the 
relations 

2#1 = -Xo -/ca - x2, 2/12 = -Xo - 2xl 

as a consequence of the particle-hole symmetry of the strip Hamiltonian 
Gi. (It is easy to verify that /~1=#3.) Only in this case we obtain the 
correct position of the phase transition from the (4• 1) to the 
homogeneous (1 • 1) phase at zero temperature. 

Substituting now (12) into (10) with Gi, j defined by (13), the numeri- 
cal iteration procedure may start. In the case t = 1 the multisite functions 

11  ~i.j(M~,) ) (which are homogeneous along the strips, i.e., independent of j )  
are defined on the rectangular cluster consisting of only four lattice sites. 
The initial values of the functions 

simulate the boundary condition of the studied 2D system on a semi- 
infinite half-lattice (for details see refs. 1 and 2). For t = 2 ,  the above 
clusters are one column larger. 

4. RESULTS A N D  DISCUSSION 

The iteration equation (10) has been solved numerically for all the site 
1,2 configurations of the clusters M/1,~ and Mi. m. Analyzing then the spatial 

behavior of the functions g~,-,m calculated at different values of the tem- 
perature and ct, we get the phase diagram of the Hamiltonian (11) depicted 
for t = 1 in Fig. 1. 

In the ground state the system can be in one of two phases, 
homogeneous (1 x 1) structure (in the Ising language, ferromagnetic struc- 
ture) or the (4x  1) structure. At ~ =  1/3, the cluster energies Gi, s of (13) 
and the Hamiltonian H of (11 ) of both structures are equal to each other, 
i.e., this point corresponds to the phase transition between these structures. 

As expected, with increasing temperature T~=d =4T/Jo, besides com- 
mensurate structures, the floating incommensurate and disordered struc- 
tures have been found as well. The calculated transition lines corresponding 
to the melting of commensurate structures ((1 x 1 ), (4 x 1 )) are in relatively 
good agreement with the transition lines obtained by the interface free 
energy method (xg) if the interfaces--as for our strips--are considered 
perpendicular to the competing interactions (in Fig. 1 the two-dot/dashed 
line (7) and the dot ted line(2~ 

As in Monte Carlo calculations, (7's) our method exhibits a Lifshitz 
point on the (1 x 1) side of the phase diagram (eL=0.308, Trea,L =0.896). 
However, the existence of this point at the boundary of the (1 x 1) phase 
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20 I ~ i  

! 

O.S ~- (I~I) 

0 I 

o ~/3 

(4 x I) 

I I 

O 
C~ 

Fig. I. Phase diagram calculated by means of the iteration procedure (10). Full lines repre- 
sent the phase transitions between the commensurate [(1 x 1) and (4 x 1)], disordered (D), 
and floating incommensurate (I) structures. The dashed line represents the disorder line. The 
other transition lines are analytical results obtained by different authors using the interface 
method of M~iller-Hartmann and Zittartz. (19) These correspond to the melting of the (1 x 1) 
structure (the two-dot/dashed line, Hornreich et  aL (7)) and the (4 x 1) structure (the dotted 
line, Ala-Nissila et aL(2~ the dot-dashed line, Kroemer and Peseh(nJ), respectively. 

was questioned by Villain and Bak (1~ and Coppersmith et aL (is) In their 
papers the important role of the dislocations was shown--the dislocations 
are not taken into consideration in our method. In addition, the Monte 
Carlo simulations (9) demonstrate strong finite-size effects, and ref. 9 also 
corrects the conclusion of the previous Monte Carlo calculations (7"8~ as 
concerns the location of a Lifshitz point. 

For e L < ~ <  1/3, the (1 x 1) structure melts directly into the floating 
incommensurate phase. 

For e > 1/3, our numerical calculations show that in the studied model 
there are no direct transitions from the (4 x 1) structure into the disordered 
phase, i.e., the floating incommensurate phase extends up to e = 1. (In the 
Ising model language this point corresponds to the reduction of the lattice 
into two independent Onsager lattices.) On the basis of these calculations 
it seems that in the ANNNI model, if the ~-parametrization is used, there 
is no Lifshitz point on the (4 x 1) side of the phase diagram because the 
disordered, the floating incommensurate, and the (4 x 1) phases meet only 
at the decoupling point ~ = 1 (our higher-order calculations for t = 2 have 
confirmed this conclusion). Similar behavior was obtained by Finel and de 
Fontaine (14~ studying the instability of the disordered phase in the vicinity 
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of c~ = 1. However, the precision of T c calculated by them is only 25 % for 
c~ = 1; nevertheless, it is very good for c~ = 0. Our approach yields very good 

c _ _  c - -  results for Tred(c~ -- 0) = 2.2694 as well as for Tred(e - 1 ) = 2.272. The exact 
value of the critical transition temperature (3) is T~a=2/ ln(x / /2+  1)= 
2.26918... for both c~= 1 and e = 0 .  (The latter case corresponds to the 
classical Onsager lattice.) Note  that the existance of the Lifshitz point on 
this side of the phase diagram has been discussed by many authors, but 
without concrete calculations (ref. 3 corrects the previous work of Selke ~9)) 
and mostly within the K parametrization, where x is the competing 
parameter Ire ='[2/'/1 > 0; compare with Eq. (11)]. One assumes that the 
Lifshitz point occurs at ~:--* oc. 

The shape of our phase diagram is very similar to that obtained by 
Finel and de Fontaine (14) in particular its low-temperature part with the 
incommensurate phase is also present at c~ < 1/3, with, however, a Lifshitz 
point. (An invisibly narrow area of the disordered phase stable to the 
multiphase point T = 0  is claimed in ref. 14.) 

Motivated by the Monte Carlo simulations, ~ we also solved the itera- 
tion equation (10) for a (1 x 2) rectangular cluster having six lattice sites, 
i.e., using a higher-order approximation with t = 2. The results confirm the 
expected size effects; nevertheless, the characteristic features of the phase 
diagram--as shown by Fig. 1--are preserved. The boundary lines of the 
(1 x 1) and (4x  1) structures are slightly shifted in the direction of 
the values obtained by the interface method of Miiller-Hartmann and 
Zittartz (7'2~ while the boundary between the floating and disordered 
phases is shifted to the lower values of Trod. The Lifshitz point has been 
detected at (e~= 2 = 0.310, T~a.t= 2L = 0.859), i.e., the value of Trod corresponding 
to the Lifshitz point decreases. Therefore, we can speculate that the 
increasing order of the approximation should shift the Lifshitz point along 
the boundary of the (1 x 1) phase to (e = 1/3, Tred =0) .  

The conjecture of the location of the Lifshitz point at ( e =  1/3, 
Tred = 0) might also be confirmed by the existence of metastable disordered 
solutions of Eq. (10) in a narrow region around e =  1/3 up to T~ed=0. 
This solution has a higher free energy than the stable (1 x 1), floating 
incommensurate, and (4 x 1) phases. (The free energy has been calculated 
using the corresponding formulas in refs. 1 and 2.) 

In the following part of this section we present the results of the 
iteration procedure (10) to illustrate the different structures of the phase 
diagram in Fig. 1. For this task it is convenient to choose (1" 2) the effective 
chemical potential #Tfr simulating single-site effective interactions 
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(a) -1.2 
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- 2 . 2  
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r a = 0 . 6  

. . . . . . . . . . . . . . . . . . . . . . . .  . . . .  
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- 3 . 2  
550  

a = 0 . 6  
Tre d: 1.43 

. . . . . . . . .  , . . . . . . . . .  6 . . . . . . . . .  ' . . . . . . . . .  , . . . . .  
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T~ed= 1.7 

- -2.2 . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  
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i ( row number )  

Fig. 2. The spatial dependence of the effective chemical potential/~fr in the floating incom- 
mensurate phase reach fourth step is connected by a line and denoted by different symbol in 
order to see the structure of the results of the iteration procedure (10)] for �9 = 0.6 and for 
(a) T~o d = 1.43, i.e., slightly above the (4 x 1) structure; (b) detail of (a), where, in distinction 
to (a), the successive steps of (10) are connected to show the oscillation form of /~rr; 
(c) Tre e = 1.7, i.e., close to the boundary with the disordered phase. 
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instead of the individual functions g~i,,n. Iterating (10), we see that in our 
model the effective chemical potential/z~ fr of the (4 x 1) structure oscillates 
among four values, while in the homogeneous (1 x 1) phase p7 rr converges 
(without any oscillations) to one of two values, depending on the initial 
boundary conditions. 

The incommensurate phase is characterized by a quasiperiodic and 
oscillating behavior of p~fr. Its concrete structure is determined by the tem- 
perature and the "competing" parameter e. The typical behavior of the 
effective chemical potential #7 er in different parts of the incommensurate 
region is presented in Figs. 2 and 3. The region close to the (4 x 1 ) structure 
is shown in Fig. 2a. Here e = 0.6, but in fact, at arbitrary c~ near the bound- 
ary of the (4 x 1) structure, the instability of the commen;urate structure 
with respect to the formation of walls occurs. We see that the domain walls 
separate the commensurate areas formed by the (4 x 1) structure shifted 
with respect to each other by one lattice constant (practically horizontal 
parts of the curves; cf. Fig. 2a and Fig. 2b). The distance between the walls 
depends on the temperature and e (see below). A similar situation occurs 
near the boundary of the incommensurate region with the homogeneous 
(1 x 1) structure, as shown in Fig. 3. Here, however, the incommensurate 
structure consist of empty and full (1 x 1) structures (a consequence of the 
particle-hole symmetry). In this case the space dependence of the coverage 
inside the wall has the form of a kink. The situation in the upper part of 
the incommensurate region--close to the transition line into the disordered 
phase--is illustrated in Fig. 2c. For this region a sinusoidal shape of #~fr is 
characteristic. 

- 4 . 0  

elf  

- 6 . 0  

T , , d = 0 . 7  + -- ~ = 0 . 3 2 1 8 2  
* -- ~ = 0 . 3 2 1 8 5  

- 8 . 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0 50 I O0 150 200 

i ( r o w  n u m b e r )  

Fig. 3. The spatial dependence of the effective chemical potential #~n in the floating incom- 
mensurate phase close to the boundary of the homogeneous (1 • 1) structure (the successive 
steps are connected). For  comparison the #~fr for two different values of ~ are depicted. 
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-1 .8  
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- 2 . 4  . . . . . . . .  i . . . . . . . . .  ~ . . . . . . . . .  i . . . . . . . . .  , . . . . . . .  , ,  

0 50 1 O0 150 200 250 
i (row number) 

Fig. 4. The behavior of the effective chemical potential g~rr in the disordered phase near the 
boundary of the floating incommensurate phase (each fourth step is connected). 

The disordered phase is divided into two parts with different modula- 
tion regimes by a disorder line. It seems that this disorder line is tangential 
to the (1 x 1) phase boundary in the vicinity of the Lifshitz point 0~=~ c. 
(In Fig. 1 the calculated points of the disorder line are denoted by the open 
circles.) To the right of the disorder line, any disturbance of the disordered 
phase is followed by slowly decaying oscillations of #7~ as shown in Fig. 4. 
To the left of the disorder line, the disturbances decay (monotonically) 
without oscillations. In both modulation regimes pT~r converges to a single 
value. 

To describe the incommensurate structure, it is useful to introduce the 
density q defined as q = 1/l, where 1 is the periodicity of the incommen- 
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a--0.6 

0.0 ~(4~i) 
I I 4 ( I i 4 ~ I i 5 ~ I . 6 ~ I I 7 0 

Tr~ 

Fig. 5. The dependence of the density q on the temperature T,~ in the region between the 
commensurate (4 x 1 ) structure and the disordered phase (for the same ct as in Fig. 2). 
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Fig. 6. The density q in the floating incommensurate phase between the (1 x i) and (4 x 1) 
phases. 

surate structure. For the region close to the (4 x 1) phase, q = qw/4, where 
qw is the wall density. The dependence of the density q on temperature is 
shown in Fig. 5. We see that the density q increases with the temperature. 
Near the boundary with the ordered (4x 1) structure the temperature 
dependence of the density q is approximately q ~  (Tred--ZCed) ~176 This 
result is in good agreement with the theory of Pokrovskii and Talapov, (21) 
which gives a square-root singularity. A similar behavior has been found 
for the ~ dependence of the density q. Figure 6 shows the density in the 
region between two commensurate phases. For 0.326 < c~ < 0.336 the q is 
determined with great inaccuracy (the dashed line), as here the "four 
curves" (see Fig. 2a) are transformed into "one curve" (see Fig. 3). 

In conclusion, a recently developed method has been applied to the 
lattice-gas analogue of the ANNNI model. Its ability to describe the incom- 
mensurate phase in detail has been shown. The obtained phase diagram is 
in agreement with other approaches, but similarly as there, the theory of 
dislocations (l~ and more detailed finite-size considerations (9) should be 
incorporated in the theory to get the correct low-temperature behavior. 
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